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ABSTRACT: The design of proteins with novel ligand-
binding functions holds great potential for application in
biomedicine and biotechnology. However, our ability to
engineer ligand-binding proteins is still limited, and current
approaches rely primarily on experimentation. Computation
could reduce the cost of the development process and would
allow rigorous testing of our understanding of the principles
governing molecular recognition. While computational
methods have proven successful in the early stages of the
discovery process, optimization approaches that can quanti-
tatively predict ligand affinity changes upon protein mutation are still lacking. Here, we assess the ability of free energy
calculations based on first-principles statistical mechanics, as well as the latest Rosetta protocols, to quantitatively predict such
affinity changes on a challenging set of 134 mutations. After evaluating different protocols with computational efficiency in
mind, we investigate the performance of different force fields. We show that both the free energy calculations and Rosetta are
able to quantitatively predict changes in ligand binding affinity upon protein mutations, yet the best predictions are the result of
combining the estimates of both methods. These closely match the experimentally determined ΔΔG values, with a root-mean-
square error of 1.2 kcal/mol for the full benchmark set and of 0.8 kcal/mol for a subset of protein systems providing the most
reproducible results. The currently achievable accuracy offers the prospect of being able to employ computation for the
optimization of ligand-binding proteins as well as the prediction of drug resistance.

■ INTRODUCTION

Ligand-binding proteins play essential roles in living organisms,
with interactions between small organic molecules and proteins
triggering a multitude of signal transduction processes.1−3

Given their high affinity and selectivity, nontoxicity, and
biodegradability, the design of proteins with novel ligand-
binding functions also holds great potential for application in
biomedicine and biotechnology.4−10 Fast computational
approaches that rely on mixed physics- and knowledge-based
potentials, such as Rosetta,11,12 have already proven successful
in the early stages of the discovery process. For instance,
Tinberg et al.13 engineered protein binders to the steroid
digoxigenin by first designing a minimal ligand-binding shell,
then searching the protein data bank14 (PDB) for suitable
scaffolds, and finally optimizing the designs experimentally.
Among the 17 computationally designed proteins, two were
binding to digoxigenin in the micromolar range. After
experimental optimization of the most promising design, a
protein with sub-nanomolar affinity for the steroid was found.
A similar approach has also been employed for the design of
artificial enzymes by using a model of the transition state as the
target ligand.15−18 Other design approaches that have been
proposed involve ligand docking to known protein structures19

or de novo design of short protein sequences using a
combination of docking, molecular dynamics (MD), and
Monte Carlo simulations.20

However, our ability to engineer ligand-binding proteins
(e.g., biosensors and enzymes) is still limited, and current
approaches rely heavily on experimentation, in particular at the
optimization stage.21−24 The limitations of Rosetta have often
been ascribed to a limited treatment of backbone flexibility and
lack of explicit solvation, so that computational approaches
that tackle these challenges may provide a more accurate
estimation of ligand affinity changes upon protein muta-
tion.4,22,25 Free energy calculations based on first-principles
statistical mechanics that make use of nonphysical (i.e.,
alchemical) pathways in a thermodynamic cycle have become
increasingly popular in small molecule drug discovery for the
optimization of lead compounds26,27 and have now started
being used prospectively by the pharmaceutical industry.28

Recently, alchemical free energy calculations have also shown
promise for the prediction of protein thermostability and drug
resistance.24,29−33 These calculations naturally take into
account the full flexibility of the protein−ligand complex and
the discrete nature of the solvent, and return the exact binding
affinity changes given the energy function (i.e., force field)
used. These calculations could be incorporated into protein
design pipelines; however, their quantitative performance for
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the prediction of ligand-binding affinity changes upon protein
mutation is largely unclear at this stage.
Here, we assess the ability of alchemical free energy

calculations to quantitatively predict ligand binding affinity
changes upon protein mutation on a challenging set of 134
mutations across 17 proteins and 27 ligands. We adopt an
approach that calculates the nonequilibrium work associated
with the alchemical transformation of protein side-chains
(Figure 1a), using pmx34 to build the hybrid structures and

topologies. The computational efficiency of different setup
protocols is first evaluated, and then the performance of
multiple force fields is tested. We find that investing
approximately equal amounts of simulation time in the
equilibrium and nonequilibrium parts of the calculations
results in the most efficient protocols, and that given a fixed
amount of computational resources it is beneficial to average
results from multiple force fields in a consensus approach.
When compared to the experimental data, the free energy

Figure 1. Overview of the benchmark data set studied. (a) Thermodynamic cycle showing the quantity to be predicted (ΔΔGbind); the free energy
differences estimated via alchemical free energy calculations are highlighted in red. (b) Statistics of the data set about the protein−ligand systems
and type of mutations considered. (c) Cartoon representation of the 17 protein systems present in the data set, with the number of affinity changes
upon mutation reported. Ligands and cofactors are represented by spheres.
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calculations achieve root-mean-square errors (RMSEs) as low
as ∼1.3 kcal/mol, and ∼1.0 kcal/mol when excluding a few
systems posing convergence challenges. Finally, we compare
the MD results to those obtained with multiple Rosetta
protocols, representing state-of-the-art approaches for protein
design.4,13,15−18,21 We find that a Rosetta protocol
( f lex_ddg)35 recently proposed for studying protein−protein
binding performs well also for protein−ligand binding. Simple
averaging of Rosetta and MD results produced an improved
performance for most combinations of force fields and Rosetta
scoring functions, with the best combinations returning
RMSEs of ∼1.2 kcal/mol for the full data set and ∼0.8 kcal/
mol for a subset of well-converged results.

■ RESULTS

To rigorously test the performance of the calculations, we first
built a benchmark set consisting of 134 mutations across 17
proteins and 27 ligands (Figure 1b−c; ligands shown in Figure
S1) from the Platinum36 database (see Methods in the SI).
Each mutation has an associated experimental binding free
energy difference (ΔΔG) determined by isothermal titration
calorimetry (ITC; 119 data points) or surface plasmon
resonance (SPR; 15 data points), which we aim to compute
starting from the X-ray structure of the wild type protein. The
ΔΔG values have a range of 9.5 kcal/mol and are normally
distributed (Figure S2) with a mean of 0.2 kcal/mol and
standard deviation of 1.5 kcal/mol. Overall, this is a diverse
and challenging benchmark set that contains large and flexible

Figure 2. Calibration of the nonequilibrium free energy protocol. (a) Space of protocol setup parameters tested. The three axes indicate the length
of the equilibrium simulations (five repeats of 1−10 ns), the number of nonequilibrium trajectories spawned from the equilibrium simulations
(from 10 to 500), and their length (from 20 to 100 ps). Each mark represents a specific combination of the above three variables, with the color
indicating the overall precision of the calculations (RMSσ). Equivalent plot color-coded by accuracy (RMSE) in Figure S3. (b) Scatter plots
showing the overall precision and accuracy of different setup protocols that used nonequilibrium trajectories of 80 ps. Isolines indicate the
computational cost (in simulation time) for one ΔΔG estimate. A green arrow indicates the protocol that was chosen for further calculations. (c)
Reproducibility of the calculations. The scatter plot shows the agreement between two sets of ΔΔG estimates. For the second estimate, both the
equilibrium and nonequilibrium parts of the calculations were repeated. On the bottom-right corner of the plot, the RMSD between the repeated
calculations is shown. (d) Reproducibility of the calculations when increasing the number of independent equilibrium simulations to 10. Also in this
case, both the equilibrium and nonequilibrium parts of the calculations were repeated. (e) Reproducibility of the nonequilibrium part of the
calculations. In this case, two sets of nonequilibrium transitions were started from the same equilibrium simulations. (f) Reproducibility of the
calculations (both equilibrium and nonequilibrium) for a subset of the data with four challenging protein systems excluded.
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ligands, proteins with different folds, some also containing
cofactors, and many charge-changing and small-to-large/large-
to-small mutations. The results should thus provide a realistic
average performance of the calculations across different
protein−ligand systems. First, we evaluate how the setup of
the calculations and their overall computational cost affect the
precision and accuracy of the predictions so to be able to
choose an efficient protocol for further calculations. Second,
we test and compare multiple force fields. And finally, we
compare the performance of the free energy calculations to
that of different Rosetta protocols.
Calibration of the Free Energy Protocol. In non-

equilibrium free energy calculations, there are three main setup
variables affecting the total amount of simulation time and,
thus, computational cost:

(a) the length of the equilibrium simulations of the end-
states (the bound and unbound forms of the wild type
and mutant protein; Figure 1a);

(b) the total number of nonequilibrium trajectories that are
spawned from the equilibrium simulations; and

(c) the length of these nonequilibrium trajectories, which is
proportional to the speed of the alchemical trans-
formation.

In this first part of the study, we wanted to test how these three
variables affect the precision and accuracy of the free energy
protocol (the Amber99sb*-ILDN/GAFF2 force field was used
at this stage). Thus, we tested protocols with five repeated
equilibrium simulations between 1 and 10 ns in length (always
after 1 ns of equilibration), a total number of nonequilibrium
trajectories between 10 and 500, and five different transition
lengths of 20, 40, 50, 80, and 100 ps (Figure 2a). The work
values associated with each nonequilibrium transition were
extracted using thermodynamic integration (TI)37 and then
used to estimate the free energy differences with the Bennett’s
acceptance ratio (BAR)38,39 relying on the Crooks Fluctuation
Theorem.40−42 The computationally cheapest protocol re-
quired 20.8 ns of simulation time, and the most expensive 400
ns. Accuracy was quantified as the RMSE between calculated
and experimental free energies for the whole set of 134
mutations. Precision was quantified as the root-mean-square
(RMS) of the standard errors (σ) of the predicted ΔΔGs, with
σ being estimated from the five independent simulation
repeats. In principle, the precision also determines how
reproducible the results are. However, this relies on accurate
estimates of the uncertainty for each predicted ΔΔG value.
Thus, as a stricter test of the reproducibility of our chosen
protocol, we defined and quantified “reproducibility” as the
root-mean-square deviation (RMSD) between the ΔΔG values
obtained from two independent sets of calculations, where
each set comprised five equilibrium runs and 150 non-
equilibrium trajectories in both directions considering the
whole set of 134 mutations.
The more expensive protocols tended to return more precise

(Figure 2a) and accurate (Figure S3) results. As there seemed
to be no more benefits in terms of accuracy when increasing
transition lengths from 80 to 100 ps (Figure S4), we focused
on the 80 ps data. Figure 2b shows the behavior of the
precision and accuracy of the calculations when using
protocols with different equilibrium simulation lengths and
number of nonequilibrium trajectories. We observed that,
given a fixed amount of simulation time, exchanging
equilibrium for nonequilibrium sampling (i.e., moving across

the isolines of computational cost) resulted in both improved
precision and accuracy. The most effective protocols involved
investing about the same amount of simulation time in the
equilibrium and nonequilibrium part of the calculations. In
addition, the precision and accuracy of the predictions
improved quickly from 10 to 100 nonequilibrium trajectories,
after which further improvements came at a higher cost.
Surprisingly, on average, we did not see a strong association
between the length of the equilibrium trajectories and the
accuracy or precision of the calculations.
On the basis of this analysis, one of the cheaper protocols

investing about half of the simulation time in nonequilibrium
sampling was chosen for further testing, and specifically the
protocol using 150 nonequilibrium trajectories of 80 ps in
length, spawned from five equilibrium simulations of 3 ns
(equivalent to 108 ns of total simulation time per ΔΔG
calculation; Figure 2b). As a strict test of reproducibility, we
repeated all calculations (including building the simulation
systems) with this protocol and measured the RMSD between
the ΔΔG values obtained from two independent sets of
calculations (Figure 2c−f). Random ion placement during
system setup was found to negatively affect reproducibility
(Figure S5); therefore, we first updated our protocol to resolve
this issue: ions were not allowed to be placed in the vicinity of
the protein, and each equilibrium simulation was started from a
different ion configuration. With this precaution, the RMSD
between two repeated calculations was 1.40 kcal/mol (Figure
2c), which was above the target RMSD of 1 kcal/mol we
wanted to reach.
To improve the precision and reproducibility of the

calculations, we resorted to a fourth setup variable: the
number of equilibrium simulation repeats (initially set to five).
This variable was not originally screened systematically
because, assuming that each equilibrium simulation is
independent, the precision of each ΔΔG estimate (and the
RMSD between two sets of repeated calculations) should drop
with the square root of the number of simulation repeats,
which is also faster than when adjusting the other three setup
variables studied (Figure 2b). By using 10 repeated equilibrium
simulations and 300 nonequilibrium trajectories (i.e., keeping
the same ratio of equilibrium/nonequilibrium sampling, and
thus also doubling the cost per ΔΔG calculation to 216 ns), a
reproducibility RMSD of ∼1 kcal/mol was achieved (Figure
2d), as expected with independent simulation repeats. To
further investigate the source of uncertainty, we repeated only
the nonequilibrium part of the calculations from the same set
of equilibrium simulations. A comparison of the results
obtained with these two runs (Figure 2e) revealed that about
half (∼0.5 kcal/mol) of the reproducibility RMSD could be
attributed to uncertainty in the nonequilibrium sampling (Text
S1). Therefore, also based on this observation, it appears that
on average it is reasonable to invest approximately equal
computation effort in the equilibrium and nonequilibrium
parts of the calculations.
While we have been discussing protocol performance in

average terms (across all protein−ligand systems), different
protein systems present different sampling challenges. Indeed,
different degrees of reproducibility were observed across
systems, with four protein systems being found to be
particularly challenging (Text S2 and Table S1). Excluding
these systems, the RMSD between two repeated sets of
calculations decreased further to ∼0.7 kcal/mol (Figure 2f).
From here on, we will show the results for the full set of 17
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Figure 3. Performance of the free energy calculations with different force fields and force field combinations. (a) Scatter plots of experimental
versus calculated ΔΔG values. The identity line is shown as a dashed gray line, while the shaded area indicates the region where ΔΔG estimates are
within 1.4 kcal/mol of experiment (i.e., within a 10-fold error in Kd change at 300 K). The performance for the high-reproducibility subset of the
data is reported at the top-left of each plot, while the performance for the whole data set is shown at the bottom-right. Color-coding is used to
indicate the error of each individual ΔΔG estimate. (b) Summary of the performance of the calculations across force fields in terms of RMSE,
Pearson correlation, and AUC-ROC (point estimates and the 95% CIs are shown). Differences at three levels of significance are reported using
labels within the chart: e.g., a “C36 *” label above the RMSE mark of A99 indicates that the RMSE of A99 is significantly lower (i.e., agreement
with experiment is better) than that of C36 at α = 0.10. Marks in solid colors refer to the high-reproducibility subset, while marks in
semitransparent colors refer to the full data set.
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protein systems (134 mutations) as well as for the high-
reproducibility subset that excludes the four protein systems
mentioned above (86 mutations). Also note that from here on
we will discuss the accuracy for only one of the two sets of
calculations performed with the Amber99sb*-ILDN/GAFF2
force field, as the two sets showed comparable accuracy with
respect to experiment (RMSE of 1.070.98

1.40 kcal/mol versus
1.081.01

1.37 kcal/mol for the high-reproducibility subset, and of
1.391.29

1.72 kcal/mol versus 1.501.38
1.83 kcal/mol for the full data set).

Accuracy of the Calculations and Force Field
Comparison. After calibrating the free energy protocol and
assessing the reproducibility of the calculations, we evaluated
the accuracy of multiple contemporary force fields from the
Amber and Charmm families (Figure 3 and Table 1). The
agreement between calculations and experiments was quanti-
fied using three performance measures: the RMSE, the Pearson
correlation coefficient, and the area under the receiver
operating characteristics curve (AUC-ROC). These measures
capture different relationships between the calculated and
experimental data: the RMSE measures the deviation between
calculated and experimental values such that 68% of calculated
ΔΔGs are within one RMSE of the experimental ones; the
Pearson correlation coefficient quantifies the linearity of the
relationship between calculated and experimental ΔΔGs; the
AUC-ROC gauges instead the performance of the approach as
a binary classifier. We show the 95% confidence intervals (CIs)
of these measures in the relevant figures and tables. The CI was
obtained via bootstrap, by random resampling with replace-
ment the data set while at the same time stochastically
resampling each ΔΔG estimate assuming a Gaussian
distribution (see Methods in the SI). In such a way, the CI
incorporates the imprecision of each estimate as well as the
uncertainty due to the specific choice/availability of data set.

Significant differences were estimated in a similar fashion, such
that small p-values are indicative of performance differences
that are unlikely to have been the result of the specific choice
of data set or the imprecision of the estimates.
Figure 3a compares experimental and calculated ΔΔG values

for the six force fields tested (abbreviations are explained in
Table 1 and Figure 3b): three from the Amber (A99, A99σ,
A14) and three from the Charmm (C22, C36, C36m) family.
Figure 3b shows the performance of these force fields on the
high-reproducibility subset of the data (solid color) and on the
full data set (semitransparent color), according to the three
performance measures described above. The performance is
also reported in numerical format in Table 1. Overall, aside
from some exceptions, the different force fields performed
similarly, with the lowest RMSE reaching ∼1.1 kcal/mol, but
moderate Pearson correlation (up to ∼0.4) and AUC-ROC
(up to ∼0.70). RMSEs were between ∼1.4−1.6 kcal/mol for
the whole data set, and around ∼1.1−1.2 kcal/mol for the
high-reproducibility subset. The Pearson correlations achieved
were between 0.22 and 0.43, with the exception of C36, which
had a correlation of 0.04 for the reduced data set. C36 and
C36m were also the only two force fields that did not achieve a
correlation significantly (at α = 0.05) different from zero. In
terms of AUC-ROC, the C22 force field stood out as the only
one achieving statistical difference from randomness (AUC-
ROC of 0.50), with values of 0.66 and 0.70 for the full and the
high-reproducibility data set, respectively. On average, the
Amber force fields achieved AUC-ROC values slightly below
0.6, while the other Charmm force fields (C36 and C36m) just
above 0.5. Note that in these results, the simulations of the apo
states were initiated from crystal structures of the protein−
ligand complexes. We investigated the effect of starting the
simulations from crystal structures of the apo state, where

Table 1. Summary Statistics of the ΔΔG Estimatesa

abbr. protein FF ligand FF #ΔΔG experimental ΔΔG range (kcal/mol) RMSE (kcal/mol) Pearson AUC-ROC

A99 Amber99sb*-ILDN GAFF2.1/AM1-BCC 86 6.1 1.070.98
1.40 0.370.08

0.50 0.570.45
0.70

134 9.5 1.391.29
1.72 0.430.17

0.54 0.560.48
0.67

A99σ Amber99sb*-ILDN GAFF2.1/RESP 86 6.1 1.211.08
1.54 0.310.10

0.44 0.610.48
0.72

134 9.5 1.571.43
1.92 0.260.05

0.39 0.580.47
0.67

A14 Amber14sb GAFF2.1/AM1-BCC 86 6.1 1.221.15
1.60 0.280.01

0.42 0.550.43
0.68

134 9.5 1.421.35
1.79 0.430.20

0.52 0.610.50
0.69

C22 Charmm22* CGenFF 3.0.1 75 4.8 1.090.93
1.47 0.320.08

0.49 0.700.54
0.79

117 9.1 1.411.29
1.76 0.360.11

0.50 0.660.53
0.73

C36 Charmm36 CGenFF 3.0.1 75 4.8 1.241.09
1.58 0.04−0.22

0.25 0.500.36
0.63

117 9.1 1.571.44
1.97 0.27−0.01

0.43 0.510.42
0.63

C36m Charmm36m CGenFF 3.0.1 75 4.8 1.231.03
1.62 0.22−0.08

0.42 0.560.43
0.69

117 9.1 1.631.46
2.03 0.25−0.03

0.43 0.520.43
0.64

A99σ + C22 Consensus [A99σ + C22] 75 4.8 1.070.95
1.39 0.330.08

0.47 0.690.51
0.77

117 9.1 1.391.26
1.75 0.380.11

0.52 0.660.52
0.73

A14 + C22 Consensus [A14 + C22] 75 4.8 1.010.92
1.40 0.350.03

0.52 0.640.49
0.75

117 9.1 1.311.22
1.70 0.450.16

0.56 0.670.54
0.74

C22 + C36 Consensus [C22 + C36] 75 4.8 1.050.93
1.37 0.310.04

0.46 0.680.50
0.77

117 9.1 1.351.25
1.71 0.420.16

0.52 0.660.53
0.73

ROS Rosetta ( f lex_ddg/nov16) 86 6.1 0.990.86
1.16 0.390.17

0.54 0.610.47
0.71

134 9.5 1.461.23
1.73 0.250.04

0.43 0.560.45
0.65

RMD Rosetta + MD [ROS and A14 + C22] 75 4.8 0.820.74
1.03 0.440.11

0.60 0.680.51
0.76

117 9.1 1.231.10
1.46 0.490.24

0.59 0.670.54
0.73

aFor each set of calculations, the statistics based on both the high-reproducibility and full datasets are shown on the first and second line,
respectively. Results obtained with Charmm force fields are based on slightly smaller datasets (#ΔΔG) as glycine mutations were excluded for these
force fields (see Methods in the SI). “abbr.”: “FF”: force field; “RMSE”: root mean square error; “AUC-ROC”: area under the receiver operating
characteristic curve.
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available. However, we did not observe a significant overall
improvement (Figure S6).
As it has been previously observed that combining results

from different force fields in a consensus approach can result in
improved performance,29,43 we explored this simply by
averaging the results for pairs of force fields. To consider
equivalent computational costs, consensus results were built by
averaging ΔΔG estimates obtained with half of the simulations
run for each force field (i.e., the first five equilibrium repeats).
Then, we compared these consensus results with those of the
two parent force fields obtained with the full amount of
simulation data (i.e., all 10 equilibrium repeats). Effectively,
this exercise answers the following practical question: given the
chosen amount of computer time per calculation (in our case,
216 ns), is it more likely to achieve better accuracy by investing
all sampling in a single force field or by investing half of the
sampling in two separate force fields? Considering all possible
combinations of the six force fields considered here, and the
three performance measures chosen, we find that it is
statistically sensible to use a consensus approach that employs
two force fields (Figure S7). In particular, we observed that in
∼44% of the cases the accuracy of the consensus results (in

terms of RMSE, Pearson, and AUC-ROC) was better than that
of the two parent force fields; in ∼49% of the cases, the
performance was in between that of the two parent force fields,
and only in ∼7% of cases it was worse than both. When
excluding the systems posing convergence challenges, the
above percentages further improved to ∼53%, ∼44%, and
∼2%.
In Figure 3 and Table 1 we report the data for three of the

consensus results (A99σ + C22, A14 + C22, and C22 + C36).
The RMSEs for all these three consensus pairs were the same
or better than the best RMSE achieved by a single force field
(A99), despite not including the data from this force field. In
terms of Pearson correlation, the consensus results compare
favorably to those obtained with a single force field, with values
between 0.31 and 0.45. In particular, all three consensus
combinations retained the significant difference over C36,
including C22 + C36. The AUC-ROC of the consensus results
approaches closely that of C22, being equal or above 0.64 in all
cases. Even C22 + C36 shows good performance (0.68/0.66)
compared to most single force fields, despite C36 having the
worst AUC-ROC among all force fields tested (0.50/0.51).

Figure 4. Performance of Rosetta protocols. (a) Experimental versus calculated affinity changes for the f lex_ddg/nov16 protocol. The identity line
is shown as a dashed gray line, while the shaded area indicates the region where ΔΔG estimates are within 1.4 kcal/mol of experiment (i.e., within a
10-fold error in Kd change at 300 K). The performance for the high-reproducibility subset of the data is reported at the top-left of the plot, while the
performance for the whole data set is shown at the bottom-right. Color-coding is used to indicate the error of each individual ΔΔG estimate. (b)
Experimental versus calculated affinity changes for the consensus results combining the f lex_ddg/nov16 results with the free energy calculations
results A14 + C22. (c) Summary of the performance of the Rosetta calculations in terms of RMSE, Pearson correlation, and AUC-ROC (point
estimate and 95% CIs are shown). Differences at three levels of significance are reported using labels within the chart: e.g., a “A14 + C22 **” label
above the RMSE mark of ROS indicates that the RMSE of ROS is significantly lower than that of A14 + C22 at α = 0.05. Marks in solid colors refer
to the high-reproducibility subset, while marks in semitransparent colors refer to the full data set.
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Performance of Rosetta and Combined Protocols. To
compare the results of the free energy calculations to a
different approach, and to explore the complementarities of
different methods, we tested the performance of Rosetta as it
currently is the gold-standard tool for protein design. In total,
we tested 11 different combinations of Rosetta protocols and
scoring functions (Table S2).12,35,44,45 However, here we
discuss only the results of the best performing protocol
( f lex_ddg35) with one of the latest Rosetta scoring functions
(beta_nov16, or here simply “nov16”). This protocol was
recently proposed for the prediction of changes in protein−
protein affinity upon mutation,35 and we adapted it to calculate
changes in protein−ligand affinity. Despite not being originally
intended for this purpose, the protocol performed well and
comparably to the more rigorous free energy calculations
(Figure 4a), achieving a RMSE of 0.99 and 1.46 kcal/mol for
the high-reproducibility and the full data sets, respectively. For
the more reproducible subset of the data, also the Pearson
correlation was competitive to MD (0.39), whereas for the full
data set it had a lower performance (0.25). The AUC-ROC
was slightly inferior to that of the free energy calculations using
consensus force-fields (0.61 and 0.56 for the high-reproduci-
bility and the full data sets, respectively), however, not
significantly so (Figure 4c).
Given that the results obtained with f lex_ddg were on the

same scale (in terms of energy units) as those obtained with
MD, we combined the information from both approaches via
simple averaging, similarly to what was done previously for
different force fields. While many forms of regression could be
used to result in optimal performance on this data set, we
focused on the simplest approach to avoid overfitting. The
f lex_ddg protocol was tested with three scoring functions in
total (talaris2014, REF2015, and beta_nov16; see Table S2),
and free energy calculations with six force fields. When all
possible consensus force field results are considered, there are
63 ways the Rosetta and MD data can be averaged and
evaluated with each of the three performance measures
employed here (Figure S8). It was found that the performance
of these Rosetta + MD consensus results improves upon both
parent data in the majority of instances (Figure S8).
Specifically, in ∼78% of cases the consensus results were
better than both the MD and the Rosetta results, in ∼22% they
were in between, while only in ∼0.5% were they worse than
both. In Figure 4b−c we show the consensus results derived
from the f lex_ddg/nov16 Rosetta protocol and the A14 + C22
free energy calculations as an example (numerical results in
Table 1). In this case, the RMSE for the high-reproducibility
data set drops well below the 1 kcal/mol mark (0.82 kcal/
mol), while also the best RMSE for the full data set is obtained
(1.23 kcal/mol). Pearson correlation is also the highest among
all results for both data sets (0.44 and 0.49). Finally, the AUC-
ROC is comparable to that of the best results obtained via free
energy calculations (0.68 and 0.67).
In addition to MD and Rosetta, we also tested three

machine learning algorithms: two trained to predict ligand
binding affinity (RF-Score-VS46 and CSM-Lig47) and one
specifically trained to predict changes in binding affinity
upon protein mutation (mCSM-Lig48). Perhaps unsurprisingly,
the two algorithms trained to predict affinities performed
poorly when applied to the different task of predicting binding
affinity changes, as they seemed to be insensitive to a single or
few protein mutations. Conversely, the mCSM-Lig algorithm
(based on Gaussian process regression) performed well,

similarly to the results obtained here by combining the MD
and Rosetta data (Figure S9). However, this algorithm was
trained on the same data here used for testing (Platinum
database36), so this is not an independent validation of the
approach. In contrast, the physics-based models are trained on
simple physical properties such that this data set tests whether
they can extrapolate to more complex properties. While
machine learning in general, and mCSM-Lig in particular, are
certainly promising avenues for the fast estimation of changes
in ligand-binding affinity upon protein mutation, other tests on
new data sets will be needed to evaluate the performance of
such algorithms.

■ DISCUSSION
In this work we tested multiple approaches for the estimation
of ligand binding affinity changes upon protein mutation on a
data set of 134 ΔΔG values across 17 proteins and 27 ligands.
Given the diverse and challenging nature of the test set, we
believe the results shown provide a representative picture of
the average performance for the methods tested. Free energy
calculations that employed 216 ns per estimate were used to
test the accuracy of six different modern force fields. It was
shown that combining the results of two force fields in a
consensus approach provides better performance than invest-
ing all the simulation time in a single force field. In such a way,
the free energy calculations achieved RMSEs with respect to
experiment as low as ∼1.3 kcal/mol when considering the full
data set, and as low as ∼1.0 kcal/mol when excluding four
protein systems posing reproducibility challenges. Overall, this
performance is in line with what was observed in previous
studies.31,32,49 In particular, Hauser et al.31 used similar
calculations to estimate the effect of Abl kinase mutations on
inhibitor affinity in the context of drug resistance: using a data
set of 144 ΔΔG values across eight inhibitors, spanning a range
of ∼6 kcal/mol, they obtained a RMSE of 1.1 kcal/mol.
From these calculations, additional observations that can be

useful for the practical application of the methodology can be
made.

(a) The most efficient free energy protocols invested
approximately equal amounts of simulation time in the
equilibrium and nonequilibrium parts of the calculations.

(b) Random ion placement within the simulation box was
found to be detrimental to reproducibility in some
instances, as internal water molecules might be replaced
by ions, and ions placed in buried protein cavities could
bias equilibrium sampling. Despite its simplistic nature,
our approach to exclude water molecules directly around
the protein to be replaced by ions, and then allow for a
short equilibration, was sufficient to solve the reprodu-
cibility issue. More sophisticated approaches that place
ions in electrostatic potential minima, or a more rigorous
treatment of salt conditions,50 could also obviate the
same issue while allowing for starting ion configurations
closer to equilibrium.

(c) The fact that we did not observe an improvement of the
results when initiating the simulations of the apo states
from apo-state X-ray crystal structures might suggest
that, usually, the structure of the complex provides a
reasonable starting structure also for the apo state.

(d) While the performance reported is representative of an
average across protein−ligand systems, the calculations
achieve different performances for specific systems
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(Figure S10). When focusing on a specific target, it is
still recommended to validate the methodology against
experimental data whenever possible.

(e) The more mutations carried out in a single calculation,
the less precise and accurate the estimates were (Figure
S11).

(f) We did not observe a trend for which the net-charge
change of the simulation box correlated with the
accuracy of the predictions (Figure S12), supporting
the hypothesis that, for this specific application/setup,
finite size artifacts due to the use of Ewald summation
methods51 mostly cancel out between the two legs of the
thermodynamic cycle such that other sources of error
dominate the final errors observed (see also Methods
and Figure S13).

In this study we also found that a recently proposed Rosetta
protocol ( f lex_ddg) can quantitatively predict changes in
ligand affinity upon protein mutation (RMSE of ∼1.0 and ∼1.5
kcal/mol for the reduced and full data sets, respectively).
However, we note that there is room for improving the
performances of both the free energy and Rosetta calculations.
For instance, here we carried out a straightforward adaptation
of the f lex_ddg protocol that does not sample different ligand
conformations; additional adjustments accounting for ligand
flexibility might result in higher performance. The efficiency of
the nonequilibrium free energy protocol can also be improved
by, e.g., considering nonlinear paths for the alchemical
transformation or more suitable soft-core potentials.52 We
also note that in this study we used a fairly short equilibration
time of 1 ns for all systems, while some may need longer times
to equilibrate.53 In fact, here we studied multiple protein−
ligand systems without in-depth knowledge of any of them.
When focusing on a specific system of interest, the user is also
likely to have prior information that might be used to improve
upon the quality and modeling (e.g., on protonation states, or
changes in ligand binding poses). Refinement of force field
parameters for the ligand molecules could also result in
improved accuracy.54−56 In fact, general advances in the
potential energy and scoring functions used,12,57 and in the
quality and speed of sampling,58−60 can be expected to result in
corresponding improvements in the convergence and accuracy
of the calculations here described.
It is important to put the performances of the calculations in

the context of their computational cost. With the free energy
calculations, each ΔΔG estimate took between 2 and 5 days on
a node with 20 CPU threads and 1 GPU (Intel Xeon E5-2630
v4; GTX 1080 Ti), depending on the size of the system (from
∼30 000 to ∼100 000 atoms). With the f lex_ddg protocol,
each ΔΔG estimate took up to a day on a single CPU core. It
thus emerges that Rosetta and in particular the f lex_ddg
protocol is likely the most appropriate starting point for a
campaign aimed designing ligand-binding proteins or antici-
pating drug resistance. However, we argue that alchemical free
energy calculations are a complementary approach that brings
additional value at the optimization stage of the design process.
First, the best free-energy-based consensus approaches (e.g.,
A14 + C22) did return better RMSE, Pearson, and AUC-ROC
performance than Rosetta when considering the full data set
(Table 1 and Figure 4c), despite the differences not being
significant at the α = 0.10 level. This might suggest that the
challenges faced by MD simulations are also present, and
possibly to a larger extent, in the Rosetta calculations when

considering highly flexible systems. Second, the best perform-
ance was obtained only when combining MD and Rosetta
results (RMSEs < 1.0 kcal/mol on the high-reproducibility
data set; Figure S8). Third, nonequilibrium free energy
calculations provide not only a ΔΔG estimate, but also
extensive sampling of the four end states of interest (apo and
holo simulations for the wild type and mutant proteins). These
equilibrium simulations in explicit solvent can be further
analyzed and used to either apply additional filters or to
rationalize experimental results, as was done for instance by
Privett et al.25 and Kiss et al.61

Thus, in summary, a possible integrated protocol might
include Rosetta calculations for an initial larger screen,
followed by refinement of the most promising results via the
incorporation of free energy calculations, which would allow
for a higher predictive power as well as provide dynamical
insight into the effect of the mutations. On the basis of the
results obtained here, combining Rosetta and free energy
calculation results via simple averaging can achieve RMSEs
below 1 kcal/mol when considering protein systems providing
well-converged results.

■ CONCLUSION
We have shown how both rigorous nonequilibrium free energy
calculations based on MD simulations, as well as the latest
Rosetta protocols, are able to quantitatively predict changes in
ligand binding affinity upon protein mutations. In particular,
the best predictions, which were the result of combining the
estimate from both methods, closely matched the exper-
imentally determined ΔΔG values, with RMSE of ∼1.2 kcal/
mol for the full benchmark set and of ∼0.8 kcal/mol for the set
of protein systems showing well-converged results. As these
calculations can find direct application for the design of ligand-
binding proteins and the prediction of drug resistance, the
present results confirm the potential of both physics-based and
knowledge-based computational approaches for complement-
ing experimentation in the engineering of biological macro-
molecules and the design of more robust small molecule drugs.
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